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Abstract

We discuss the self-assembly system of triangular tiles instead of square tiles, in particular right
triangular tiles and equilateral triangular tiles. We show that the triangular tile assembly system, either
deterministic or non-deterministic, has the same power to the square tile assembly system in computation,
which is Turing universal. By providing counter-examples, we show that the triangular tile assembly
system and the square tile assembly system are not comparable in general. More precisely, there exists
square tile assembly system S such that no triangular tile assembly system is a division of S and produces
the same shape; there exists triangular tile assembly system T such that no square tile assembly system
produces the same compatible shape with border glues. We also discuss the assembly of triangles by
triangular tiles and obtain results similar to the assembly of squares, that is to assemble a triangular of
size O(N2), the minimal number of tiles required is in O(logN/ log logN).

1 Introduction

In the nature, molecules tend to interact to form more complicated structures of crystals and supramolecules.
The spontaneous construction of particular molecular structures is one important topic in DNA and molecular
computing, which is based on the Watson-Crick complementarity between pairs of DNA strands. Generally,
the process is composed of two steps. First, the basic building blocks are carefully designed and constructed
by synthetic chemistry; and then the aimed large structure is assembled by sticking basic blocks together
through Watson-Crick complementarity. In 1996, Winfree [7] showed how the formation of large structures
from certain DNA molecules can simulate the Blocked Cellular Automata (BCA), which is of the same
computational power to the Turing machines. In 1998, Winfree, Liu, Wenzler, and Seeman [8] designed and
produced two-dimensional DNA crystals in their laboratory by the method of self-assembly.

One systematic study on this topic is the self-assembly of squares. In 1999, Adleman [2] proposed models
of self-assembly, which are based on the theory of Wang tiles [6], and studied the time complexity of linear
polymerization via “step counting”. In 2000, Rothemund and Winfree [5] showed that to deterministically
self-assemble an N ×N full square, N2 tiles is required for temperature τ = 1 and the number of tiles for
the case of fixed temperature τ ≥ 2 is O(logN). In 2001, Adleman, Cheng, Goel, and Huang [1] showed
that Θ(logN/ log logN) tiles is enough for fixed temperature τ ≥ 2. In 2006, Kao and Schweller [3] showed
that if the temperature τ is allowed to change systematically, then a constant number of tiles is enough for
the self-assembly of arbitrary N ×N full square with temperature sequence of length O(logN).

One variation on the self-assembly of squares is that we study tile of shapes other than squares that can
tile a full two-dimensional plane; and instead of considering full squares, we discuss the self-assembly of other
particular full two-dimensional region. For tiling a full two-dimensional plane with one single shape of regular
polygons, the only possible choice of regular polygons are equilateral triangles, squares, and hexagons. In
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Figure 1: Four right triangular tiles and two equilateral triangular tiles

this paper, we discuss the self-assembly of triangles and other shapes by triangular tiles, more specifically,
of shape of equilateral triangles and of right triangles, respectively.

In Section 2, we will introduce the definition of triangular tile assembly system. In Section 3, we discuss
the computational power of the triangular tile assembly system, and show that it is Turing universal. In
Section 4, we compare the square tile assembly system and triangular tile assembly system in the aspect of
shape complexity and show that the two types of system are not comparable. In Section 5, we discuss the
assembly of triangles. In the last section, we summarize the obtained results.

2 Definitions

All discussion in this paper is on a two-dimensional plane. Before we discuss the right triangular tiles and
the equilateral triangular tiles respectively, we first give a uniform definition of the Tile Assembly Model
(TAM).

Similar to the square tiles, we define a triangular tile to be an triangle of particular shape (right triangle
or equilateral triangle) with each side being colored from the set Σ of “glues”. Without loss of generality,
we assume that the shortest side of a triangular tile is of unit length. We also assume that a triangular tile
cannot be rotated nor flipped over. Both square tiles and triangular tiles are called tiles.

The particular non-interactive glue is denoted by φ and we always assume φ ∈ Σ. The temperature τ is a
real number, which presents under which the assembly is proceeded, and the set of all valid temperature is
denoted by W . A strength function g : Σ×Σ → W is defined such that g(γ, γ′) = g(γ′, γ) and g(φ, γ) = 0. In
particular, we are interested in the discrete case τ ∈ N , Σ = Γ×N and g((a, n), (a′, n′)) = n if a = a′, n = n′

otherwise g((a, n), (a′, n′)) = 0, where N = 0, 1, . . . are non-negative integers.
We say two tiles can stick together if they can be physically put adjacent by the sides γ and γ′ of the

same length such that g(γ, γ′) ≥ τ . A tile can stick to a set of tiles if they can be physically put adjacent
by the sides γi and γ′

i of the same length such that
∑

i g(γi, γ
′

i) ≥ τ . A super-tile is a set of tiles that stick
to each other such that no two tiles overlap and for any two tiles there is a path of sticked edges between
them. We also call a single tile super-tile.

A tile assembly system is a tuple S = (T, s, g, τ), where T is a finite set of tiles, s ∈ T is a particular
super-tile called seed, g is a strength function, and τ is the temperature. The produce of a tile assembly
system is a super-tile st such that there is a super-tile sequence s = st0, st1, st2, . . . , st = stn, where sti+1 is
obtained by stick one tile in T to sti under temperature τ and no tile in T can be stick to stn to obtain a
bigger super-tile. A tile assembly system is deterministic if its produce is unique regardless of the different
choice of super-tile at each step.

In analogy to the self-assembly of full square, in what follows we will study the self-assembly of full
triangles and other full shapes by right triangular tiles and equilateral triangular tiles, respectively. Here
“full” means the pair of common edges of every two adjacent tiles in the produce has a positive strength.

Right triangular tiles are triangular tiles of the shape of right triangles with the right angle point to
four possible directions as illustrated in Figure 1. More formally, a right triangular tile is described by
(γ1, γ2, γ3, k), where γi ∈ Σ are glues on sides of the tile in the counter-clockwise order starting from the
longest side and k ∈ { e, n, w, s } presents the direction of the right angle. Equilateral triangular tiles are
triangular tiles of the shape of equilateral triangles that are either in an upward position or in a downward
position as illustrated in Figure 1. More formally, it is described by (γ1, γ2, γ3, k), where k ∈ { u, d } presents
the two positions and γi ∈ Σ are glues on sides of the tile in the counter-clockwise order starting from the
horizontal side.
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Figure 2: Conversion of a Wang system with square tiles into an equivalenct Wang system with equilateral
triangular tiles
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Figure 3: Tiles of a square TAM which simulates a given Turing Machine at temperature τ = 2. A tile
can stick to its neighbor via a single-lined edge with a glue strength 1 or via double-lined one with strength
2, but the glue works only when the abutting edges share the same label and the directions of their arrow
heads (if any) must match (head with tail).

3 Computational Complexity

Tiling a plane is equivalent to attaching tiles onto a lattice of a coordinate system on the plane. The choice of
coordinate system is arbitrary, but square tile systems are to choose the rectangular coordinate system CR.
In contrast, the oblique coordinate system is rather natural as a pasted board of triangular tiles. It seems
reasonable to say that the oblique coordinate system Cπ/3 whose two axes intersect with π/3 is the best
choice for equilateral triangular tiles. The right triangular tile accords with both rectangular and oblique
coordinate systems because it can tessellate unlike equilateral triangular tiles. The conversion among these
coordinate systems can be done by affine transformations.

As implied in Figure 2, so far as Wang tile system is concerned, whether the tile shape is square, equilateral
triangle, or right triangle does not matter because the Wang tile system does not have the notion of growth
by time or temperature, and imposes that any abutting edges have to have the same glue. Several problems
on the computational complexity of Wang tile system was studied by Robinson in 1971 [4]. Among them, one
important problem is the tiling full plane problem: given a Wang tile system, decide whether any product
of that system is not a full plane. The argument so far should make it clear that we can obtain analogous
results for Wang system with triangular tiles. For example, tiling full plane problem is undecidable for a
given Wang system with (equilateral, right) triangular tiles.

This conversion may still work for non-deterministic tile assembly models, but it does not work any more
for deterministic ones. Let us verify this statement by trying to simulate a Turing machine by the triangular
TAM thus obtained. Based on the conversion, the tile in Figure 3 which merges the state qi from the right
to the letter aj is split into (aj , γ, φ, u) and (qiaj , γ, qi, d). What is important is that two inputs of the square
merging tile aj , qi are now separated onto the two triangular tiles, and cannot cooperate until one of the
tiles is stuck to the super-tile.
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Figure 4: Equilateral triangular tiles for the simulation of Turing machines, where a1 · · · an is the input,
b ∈ Σ, δ(q1, c1) = (p1, d1, L), and δ(q2, c2) = (p2, d2, R). (top) action tiles and merging tiles; (middle) alphabet
tiles for letters to the left of TM head (indicated by L) and for letters to the right (R). The two tiles with
the label C are used to fill the third and fourth quadrants; (bottom) tiles for initialization with the third
tile as seed;

This failure means that the conversion requires some modification for the deterministic triangular TAM
construction. In the following, we will prove that the triangular tile assembly system is Turning universal in
the sense that the tiling full plane problem can simulate the halting problem. Throughout these proofs, it
will be elucidated what modification to be required.

Theorem 1. The deterministic equilateral triangular tile assembly system is Turing universal at temperature
τ ≥ 2.

Proof. We simulate a given deterministic Turing machine M = (Q,Σ,Γ, δ, q0, B, F ) by a deterministic equi-
lateral triangular TAM whose tile set is shown in Figure 4. Without loss of generality, we can assume that
M always moves its head when it transits.

(B,L) (B,L) q0a1 (a2, R) (a3, R) (a4, R)

· · · · · ·

Using the tiles on the bottom row of Figure 4, The initial configuration · · ·Bq0a1a2 · · · anB · · · self-
assembles from the seed (q0a1, BL, a2, d) in a straightforward manner as shown just above. Each letter
is coupled either with the indicater L if the letter is to the left of the head or with R otherwise. Note that
the top edges with the TM head or to the left of the head are double-lined, and hence are bound to their
matching bottom edges with strength 2. Thus, for instance, the upward alphabet tile with L at its bottom
can stick to these top edges without any cooperation so long as their letters match. This is not the case for
the edges to the right of the head because their glue strength is 1.

Let us consider the transition δ(q0, a1) = (q1, b1, R) first. Via the edges with strength 2, the upward
alphabet tiles simultaneously stick to the edges located to the left of the TM head. In order for them to
extend further by using the corresponding downward alphabet tiles, an action tile ((q0a1, q1b1, A, u) in this
case) has to be stuck to the super-tile. The action tile changes the state q0 and the letter a1 according to
the transition to q1 and b1 deterministically, and its corresponding downward tile branches the letter up and
the state to the right. Now the merging tile ((a2, R), q1a2, q1, u) can attach by the cooperation of left and
bottom edges, and the attachment of its corresponding upward tile immediately follows. The letters to the
right of TM head are extended one by one in this manner.
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q0a1 (a2, R) (a3, R) (a4, R)

(B,L) (B,L) (b1, L) q1a2 (a3, R)

· · · · · ·

q1

The transition δ(q1, a2) = (q2, b2, L) is simulated essentially in the same manner as the previous simulation
so that it may suffice to illustrate it as follows:

q0a1 (a2, R) (a3, R) (a4, R)

(b1, L) q1a2

· · · · · ·

q1

b2q3

(B,L) (B,L) q3b1 (b2, R) (a3, R)

This Turing machine simulator consists of at most 2n+3+4|Σ|+m(1+3|Σ|) tiles, where n is the length
of the input a1 · · · an, and m is the number of transitions defined in this Turing machine M .

This simulation keeps tiling the plane upward until it reaches some halting configuration, i.e., the head is
in a state q and is on the cell with a letter b such that δ(q, b) is not defined. So the undecidability of halting
problem of Turing machine leads us from this theorem to the following corollary.

Corollary 2. It is undecidable whether a given deterministic equilateral triangular tile assembly system
produces a super-tile other than full plane.

For any equilateral triangular tile assembly system S = (T, s, g, τ), we define the “flattened” right trian-
gular assembly system F(S) = (T ′, f(s), g, τ), where T ′ = { f(t), t ∈ T }, f(γ1, γ2, γ3, u) = (γ1, γ2, γ3, n), and
f(γ1, γ2, γ3, d) = (γ1, γ2, γ3, s). Then S produces a super-tile that is not the full plane if and only if F(S)
also produces a super-tile that is not the full plane. Then the following corollaries of Theorem 1 hold.

Corollary 3. Deterministic right triangular tile assembly system is Turing universal at temperature τ for
τ ≥ 2.

Corollary 4. It is undecidable whether a given deterministic right triangular tile assembly system produces
a super-tile other than full plane.

One advantage of right triangles over equilateral ones is that right triangles can tile the square grid, and
actually there are two ways to fill a square being rotated by π/4 with right triangles: east and west triangles
or north and south triangles. This fact enables us to handle more intuitively the “input-split” problem which
the equilateral triangular TAM has already encountered. That is, the square tile which merges a state from
the left is split into half from its left-top to right-bottom, while the tile which merges from the right is cut
from right-top to left-bottom. Figure 5 illustrates the right triangular TAM designed according to this idea,
which simulates a deterministic Turing machine M = (Q,Σ,Γ, δ, q0, B, F ) on an input a1a2a3 . . . an. One can
verify by definition that the given system is a deterministic right triangular tile assembly system with at
most 2n+ 4+ 4|Σ|+m(1 + 2|Σ |) tiles (slightly better than the flattened right triangular TAM), where n is
the length of the input of the Turing machine M and m is the number of transitions defined in the Turing
machine M .

The simulations of Turing machines by TAMs with different shapes given in this section negates the idea
that the right triangular TAM or even equilateral triangular TAM might be completely equivalent to the
square TAM, topologically, in spite of the different tile shapes. We will proceed this investigation further in
the next section.
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Figure 5: Right triangular tiles for the simulation of Turing machines with the seed (a1, B, C, w). In this
figure, ai are the input, b ∈ Σ iterate all letters, qi ∈ Q \ F , δ(q1, c1) = (p1, d1, L), δ(q2, c2) = (p2, d2, N), and
δ(q3, c3) = (p3, d3, R).

4 Shape Complexity

We can a shape compatible with a given type of tile assembly system, if the region occupied by that shape
on the two dimensional plane can be tiled geometrically by the tiles. It is obviously that if a shape is not
compatible, then no super-tile of that shape can be produced by tile assembly systems. For example, a
pie cannot be assembled by unit square tiles nor triangular tiles. So in the remaining discussion, we only
consider the assembly of compatible shapes.

Proposition 5. Any compatible shape can be produced by a non-deterministic triangular tile assembly system
with O(1) tiles, and by a deterministic triangular tile assembly system with A tiles, where A is the totally
number of tiles to geometrically assemble that shape.

Proof. First we consider the equilateral triangles in the non-deterministic cases. Consider the set of tiles
T = { (a, b, c, k) : a, b, c ∈ {φ, g }, k ∈ { u, d } }. All glue of g are of strength 1 and temperature is τ = 1.
The seed and assembly process is as follows: the super-tile of given shape is assembled according to the
geometrical division of the region. This can be done since the shape is compatible. At each step, a tile sticks
to the super-tile in such a way that if the tile is surrounded by other tiles in the completed region, then every
edge of that tile is of glue g; otherwise, the edge that composes the border of that region is of empty glue φ.

If we make each pair of stick sides with unique glue, then the shape can be assembled deterministically
by O(A) tiles.

The right triangles case is similar.

Proposition 5 can be generalized to tiles of other shapes, such as square tiles. In what follows, we only
consider deterministic tile assembly systems.

A right triangular tile assembly system T is called a division of a square tile assembly system S if for
any tile s in S, there is a pair of tiles t, t′ such that on temperature τ ≥ 1 tiles t, t′ can produce s with π/4
rotation; and for any tile t in T , there is a tile t′ in T and a tile s in S such that on temperature τ ≥ 1 tiles
t, t′ can produce s with π/4 rotation. By the definition, division of a square tile assembly system may not
be unique, and a right triangular tile assembly system can be division of two different square tile assembly
system. The number of tiles in the two systems satisfies the inequality

2
√

#S ≤ #T ≤ 4 ·#S,
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Figure 6: Two counter-examples that square tile assembly system cannot be simulated by triangular tile
assembly system. Each glue is unique and thus the label is omitted.

where # presents the number of tiles in each system. A equilateral triangular tile assembly system T is
called a division of a square tile assembly system S if the flattened tile assembly system F(T ) is a division
of S.

Lemma 6. There exists a square tile assembly system S such that no division of S can produce the same
shape with π/4 rotation.

Proof. We presents two examples here. The produce of the two square tile assembly systems are illustrated
in Figure 6, where each glue is unique and the strength is illustrated by the number of parallel edges. The
temperatures are of τ = 3 and τ = 2 respectively. The number of divisions of the square tile assembly system
is finite. One can verify that none of them produce the same shape with the original system.

The right super-tile in Figure 6 is of shape with a missing tile in the middle, and we call it has “hole”.
More formally, we say a super-tile has no hole if it is full and for every closed path of tiles, all enclosed region
is occupied by tiles.

Lemma 7. For any square tile assembly system S under temperature τ = 1 or under temperature τ = 2
with no hole in the produce, there is a division of S that can produce the same shape with π/4 rotation.

Proof. For τ = 1, the proof is straightforward. For any square tile si with glues γ1, γ2, γ3, γ4 (on east,
north, west, south sides, respectively) in S, we replace it with a pair of right triangular tiles (i, γ1, γ2, n) and
(i, γ3, γ4, s). Then the new right triangular tiles is a division of S and produce the same shape with π/4
rotation.

For τ = 2, now we assume there is no hole in the produce of S.
First we prove that there is an assembly process st0, st1, st2, . . . , stn such that every super-tile sti in the

process has no hole in it. Otherwise, we pick such a process that the steps of the first appearance of a hole
super-tile is the largest among all assembly process. Let sti be the first appearance of a hole super-tile. Then
there is a tile t in the hole region that will stick to the super-tile later and there are two adjacent edges that
can stick to that tile due to the fullness of the produce. So, we can add t to the super-tile sti−1 and get a
new st′i that does not have hole, which contradiction to the choice of the process.

Now we prove that for the assembly process without hole super-tile, the new tile can stick to the super-tile
at each step by two adjacent edges. Otherwise, suppose sti−1 becomes sti by sticking t and t only stick to
sti−1 either by north and south sides or by east and west sides. Without loss of generality, suppose it is
by north and south sides. Since the produce is full, there is no tiles on the east and on the west sides, or
t can stick by two adjacent edges. But in this case, since sti−1 is connect, sti must contains a hole, which
contradicts the fact sti has no hole.

Since new tile can stick to the super-tile at each step by two adjacent edges, we can add a pair of right
triangular tiles to simulate that square tiles; and we let the strength on the cutting edges be ≥ τ . Do so for
the whole assembly process, and we get a new right triangular tiles, which is a division of S and produce
the same shape with π/4 rotation.
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Figure 7: A counter-examples that triangular tile assembly system cannot be simulated by square tile
assembly system. Each glue, unless mentioned, is unique and thus the label is omitted. For convenience, the
picture is rotated by π/4.

By the previous two lemmas, we see that square tile assembly systems can be simulated by their division
only under certain conditions. Not we discuss the relation between the two types of tile assembly systems
in another direction: whether every right triangular tile assembly system can be simulated by a square
triangular tile assembly system, where we assume the produce of the system is compatible with the tiles.

Lemma 8. There exists a right triangular tile assembly system T such that there is no square tile assembly
system S that produce the same shape with π/4 rotation.

Proof. An example is illustrated in Figure 7, where the strength is illustrated by the number of parallel
edges. The system is under temperature τ = 2 and the top-left tile is the seed. Let S be any square tile
assembly system that generate a super-tile as in the example. Then S will continue growing by sticking a
tile on the left bottom corner to the right top corner. Therefore, the super-tile in the example cannot be
produced by square tile assembly system.

Lemma 9. For any right triangular tile assembly system T under temperature τ = 1, there is a square tile
assembly system S that can produce the same shape with π/4 rotation.

Proof. For τ = 1, we construct a square tile assembly system S from T as follows: for every pair of right
triangular tiles (γ1, γ2, γ3, n), (γ1, γ4, γ5, s) or (γ1, γ2, γ3, e), (γ1, γ4, γ5, w) in T , where γ1 6= φ, we add a new
square tile with glues γ4, γ5, γ2, γ3 or γ5, γ2, γ3, γ4 (on east, north, west, south sides, respectively) to S. Then
the new square tile assembly system produce the same shape with π/4 rotation.

To compare the produces of two tile assembly system, we not only compare the shape of the produce,
but also compare the glues on shared common edges, including both those on border and those inside the
super-tiles, with possible affine transformation on the shape, which includes rotation, scaling, shift, and their
compositions. We call the power of produce certain super-tiles the shape complexity and say one system has
greater power than another system if every system produce of the former type with compatible shape is the
produce of some system of the latter type.

For every equilateral triangular tile assembly system T , there is a right triangular tile assembly system
F(T ) such that the produces of two system is equivalent up to an affine transformation. There are two more
types of tiles in right triangular tile assembly system, which cannot be simulated by equilateral triangular
tiles. So we can say the shape complexity of equilateral triangular tile assembly system is less than that of
right triangular tile assembly system.

The example given in Lemma 8 is a flattened equilateral triangular tile assembly system. In other words,
there exists equilateral triangular tile assembly system which cannot be produced by square tile assembly
system even under affine transformations. By Lemma 6 and Lemma 8, we have the follow theorem.

Theorem 10. The square tile assembly systems and the triangular tile assembly systems are not comparable
in the sense of shape complexity.

5 Assembly of Triangles

Without loss of generality, we consider the assembly of an upright full triangle. For downward full triangle,
one can simply define a new triangular tile system by flip-over each tiles in the original triangular tile system.

8
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Figure 8: A triangular tile assembly system of 2N − 1 tiles produces a full triangle, where 1 ≤ i ≤ N . On
the right is an example for N = 4

Proposition 11. For temperature τ = 1 the minimal number of tiles to assemble a full triangle with shortest
edge of length N is N2, including N(N +1)/2 upright triangular tiles and N(N − 1)/2 downright triangular
tiles.

Proof. Without loss of generality, we consider the assembly of equilateral triangles by equilateral triangular
tiles. For the case of right triangles, we can treat it as a flattened equilateral triangles.

By Proposition 5, there exists a system of N2 tiles to assemble the required full triangle. To show that it
is optimal, suppose there is a system (T, s, g, 1) with less tiles. Then by the pigeon hole principle, there are
two tiles t1, t2 in the produce that are the same. Since the produce is a full triangle, there is a non-crossing
path of tiles from s to t1 and from t1 to t2, respectively. Since the temperature τ = 1, there is a possible
assembly process that starts from s and sticks each tile along the path from s to t1 and then from t1 to t2.
After t2 sticks to the super-tile, again sticks each tile along the path from t1 to t2 (t1 itself is not included).
So the produce of the system is a infinite structure. Since the system is deterministic, the produce cannot
be a triangle, which contradicts the assumption. So the system with N2 tiles is optimal.

Now we consider the temperature τ ≥ 2. First we show how to use 2N − 1 triangular tiles, including
N + 1 upright tiles and N downright tiles assemble a full triangular.

Proposition 12. For temperature τ = 2 there is a triangular tile assembly system of 2N − 1 tiles that
produces a full triangular with shortest edge of length N .

Proof. The system is illustrated in Figure 8. The construction here works for both equilateral triangular
tiles and right triangular tiles.

Using the same technique of square tile assembly for N ×N squares [5], the following result follows.

Proposition 13. There is a right triangular tile assembly system of O(logN) tiles that produces a full right
triangular with shortest edge of length N .

Proof. The idea is that using a seed row of length n = ⌈logN⌉ to construct a (n− 1)× (N −n+1) rectangle
super-tile by counting from (2n−N+n+2)/2 to 2n−1 with duplicate copies. Then the rectangle is completed
by filling tiles to make a right triangle. The temperature is τ = 2 and tiles is illustrated in Figure 9, where
(s1, φ, l, w) is the seed. There are in total 2n+ 37 tiles.

Using the same technique of base conversion as appeared in the square tile assembly [1] to count
the integer represented by tiles, the bound on the minimal number of tiles required can be improved to
O(logN/ log logN), which is optimal; the construction is under temperature τ = 3.

Corollary 14. There is a right triangular tile assembly system of O(logN/ log logN) tiles that produces a
full right triangular with shortest edge of length N .
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Figure 9: The O(logN) tiles, a ∈ { 0, 1}, and the produce for N = 10, n = 4. For simplicity, the label on
the super-tile is omitted.
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6 Conclusion

Square tile assembly system is discussed in the literatures widely. In this paper, we studied the triangular
tile assembly system. We showed that the triangular tile assembly system is also Turning universal. The
halting problem can be reduced to the tiling full plane problem.

Compared to the square tile system, the triangular tile system need more tiles to assemble a large
compatible structure due to the fact that a triangular tile has less edges than a square tile. In general, as we
showed, the two type of assembly system is not comparable in the shape complexity. More precisely, there
exists a square tile assembly system S such that no division of S produces the same shape with π/4 rotation;
and there exists a triangular tile assembly system T such that no square tile assembly system produces the
same shape, which is compatible with square tiles, with same border glues with π/4 rotation.

We also discussed the assembly of triangles and the number of tiles required to assemble a triangle with
minimal edge of length N is O(logN/ log logN), which is of the same order as those of square tiles. The
techniques used here is from that of assembly of squares.

The model we used in this paper is of fixed temperature, unit growing (at each step, only a single tile
stick to the super-tile), and irreversible (once tiles stick together, they will not break in the further). There
are other possible choice of models. For example, if we allow variable temperature and reversible process as
discuss on square tiles [1], then in exactly the same way to the assembly of squares, one can prove without
difficulty that O(1) tiles is enough to assemble arbitrary large compatible triangles; in that case the time
sequence is of length O(logN).

All the result presented in the paper is based on theoretical study. It will be interesting to assemble a
triangle structure using triangular tiles in the laboratory.
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